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Fig. 7. Average latency with different ThF 

 

Fig. 8. Overhead ratio with different ThF 

V. CONCLUSION AND FUTURE WORK 
NDN is a proposed future Internet architecture and gets 

extensive attention in the academic and industrial communities. 
And forwarding strategy has been one of the key and hot spots 
in NDN. NDDTN is a fusion of NDN and DTN. This paper 
proposes a forwarding strategy called RIF based on ROI for the 
data response forwarding phase of NDDTN. The experimental 
results show that RIF reduces the difference of delivery ratio of 
about 50 percent between PLBR and epidemic, and has lower 
delay and overhead ratio than PLBR. The future work is to 
optimize the design of the package format. For example, by 
considering the use of Bloom filters or encoding we can 
increase the ratio of payload. Besides, a forwarding strategy is 
to be designed and implemented in the interest request 
forwarding phase based on ROI. 

ACKNOWLEDGMENT 
This paper is supported by the National Natural Science 

Foundation of China (Project No. 61363079). 
 

REFERENCES 

[1] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. 
Smetters, et al., "Named data networking (ndn) project," Relatório 
Técnico NDN-0001, Xerox Palo Alto Research Center-PARC, 2010. 

[2] Michael Meisel, Vasileos Pappas, and Lixia Zhang. Ad Hoc Networking 
via Named Data. In Proceedings of the Fifth ACM Workshop on 
Mobility in the Evolving Internet Architecture (MobiArch), September 
2010. 

[3] Kevin Fall. A delay-tolerant network architecture for challenged 
internets. In Proceedings of the 2003 conference on Applications, 
technologies, architectures, and protocols for computer communications, 
SIGCOMM ’03, pages 27–34, New York, NY, USA, 2003. ACM. 

[4] Z.A. Jaffri, Z. Ahmad, and M. Tahir, “Named Data Networking (NDN), 
New Approach to Future Internet Architecture Design: A Survey," In 
International Journal of Informatics and Communication Technology 
(IJ-ICT), 2(3), 2013: 155-165. 

[5] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. Understanding 
individual human mobility patterns. Nature, 453(7196):779–782, 2008. 

[6] P. Hui and J. Crowcroft, “How small labels create big improvements,” in 
International Workshop on Intermittently Connected Mobile Ad hoc 
Networks in conjunction with IEEE PerCom 2007, March 19-23, 2007. 

[7] F. Xia, L. Liu, J. Li, J. Ma, and A. V. Vasilakos, “Sociallyaware 
networking: A Survey,” IEEE Syst. J., 2013, DOI: 10.1109/JSYST. 
2013.2281262. 

[8] E. M. Daly and M. Haahr, "Social network analysis for Information flow 
in disconnected delay-tolerant MANETs," in IEEE Transactions on 
Mobile Computing, Vol. 8, no. 5, pp. 606-621, May. 2009. 

[9] P. Hui, J. Crowcroft, and E. Yoneki, "Bubble Rap: Social-based for-
warding in delay-tolerant networks," in IEEE Transactions on Mobile 
Computing, vol. 10, no. 11, pp. 1576-1589, 2011. 

[10] A. Mtibaa, M. May, C. Diot, and M. Ammar, "PeopleRank: Social 
Opportunistic Forwarding," in INFOCOM 2010 Proceedings pp. 1-
5,2010. 

[11] Y. Lu, X. Li, Y.-T. Yu, and M. Gerla, “Information-centric delay-
tolerant mobile ad-hoc networks,” in Workshop on Name Oriented 
Mobility, 2014. 

[12] T. Henderson, D. Kotz, and I. Abyzov. The changing usage of a mature 
campus-wide wireless network. In Proc. Mobicom, 2004. 

[13] J. Leguay, T. Friedman, and V. Conan, “DTN routing in a mobility 
pattern space,” in Proc. ACM SIGCOMM WDTN '05. Philadelphia, 
2005, pp. 276–283. 

[14] Liu Jieyan, Gong Haigang, Zeng Jiazhi. Preference location based 
routing in delay tolerant network. Journal of Digital Content Technology 
and its Applications, 2011,5(12):468-474. 

[15] C. Liu, J. Wu. Routing in a cyclic MobiSpace. Proceeding of ACM 
MobiHoc, 2008, 351-360. 

[16] W. Gao, G. Cao, T. La Porta, and J. Han, “On Exploiting Transient 
Social Contact Patterns for Data Forwarding in Delay Tolerant 
Networks,”IEEE Transactions on Mobile Computing, January, 2013. 

[17] Wang, Rui, Fanglin Chen, Zhenyu Chen, Tianxing Li, Gabriella Harari, 
Stefanie Tignor, Xia Zhou, Dror Ben-Zeev, and Andrew T. Campbell. 
"StudentLife: Assessing Mental Health, Academic Performance and 
Behavioral Trends of College Students using Smartphones." In 
Proceedings of the ACM Conference on Ubiquitous Computing. 2014.

Fig. 9. The number of ROI for each node with different threshold ThF 
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Abstract—Rapid growth in Internet of Things (IoT)
has resulted in the need for effective management and
provisioning of resources in an IoT-based system. The
resource may be an entity (virtual or physical) that
constitutes the IoT system, such as network elements,
gateways, cloud data stores, and sensors. The dynamic
and constantly changing nature of request by a typical
user for resource allocation demands end-to-end slices
of an IoT system. In order to meet such requests,
end-to-end slices need to be integrated, ultimately
making it necessary to control and aggregate diverse
types of resources from IoT, cloud infrastructures, and
network functions. To that end, in this paper, we
propose a framework for IoT resources management
and provisioning. Our proposed approach enables to
automate resource management and provisioning for
users across IoT, clouds, and network functions by
virtualizing access to underlying IoT resources and
utilizing APIs to employ those resources. Furthermore,
our proposed approach aims to establish and manage
end-to-end slices of various types of resources from
distributed and diverse infrastructure. In this paper, we
present multiFIA – multi-dimensional Future Internet
Architecture – which permits IoT system designers to
accommodate multiple user demands by establishing
end-to-end slices of the overall IoT network. We outline
multiFIA components and layers and also describe our
approach to an implementation of multiFIA.

Keywords—future Internet; network slicing; orches-
tration; resource provisioning; service abstraction; net-
work and cloud resources.

I. Introduction
Current and future IoT resources are usually configured

and provisioned within networks that are capable of high-
speed communication. Such networks comprise of a huge
number of IoT devices, which communicate with cloud
services in datacenters through the networks. In addition,
recent virtualization techniques can be used at different
levels, from the cloud services in the datacenters, to the
networks connecting the gateways and datacenters, and
the gateways integrating sensor and actuator data and
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control flows [1]. Such virtualization techniques enable us
to establish end-to-end slices of cloud resources, network
functions, and IoT for a single application in real-time.

One of the major concerns is to manage cloud, network,
and IoT resources for applications running upon IoT and
their corresponding cloud services, and connected network
functions. A huge number of heterogeneous devices dis-
tributed at diverse edge sites have to be handled properly
because they make use of diverse models and technologies
to control their IoT resource information. Hence, resource
management must handle heterogeneity and adaptability of
underlying cloud resources, network, and IoT models.

As a motivational example, we consider an emergency
response scenario affecting multiple victims, and demand-
ing the coordination of various agencies. Examples could
be an emergency situation in a stadium with an ongoing
sports event, or a multi-vehicle traffic crash on the high-
way. The following would be required by such a scenario:

• There would be a need to create crisis response
services on the fly, which includes arranging fire en-
gines, arranging emergency vehicles, sending alert
messages to hospitals and doctors, and determin-
ing best possible routes to be assigned for ambu-
lances.

• Identification and monitoring of victims by means
of wearable sensors.

• Based on the information received from emergency
responders and the victims, suitable treatment
protocols would be served to the victims on the
fly while taking them to the hospital.

• If there are traffic jams, the traffic sensors could
determine the best possible road/route for the
emergency vehicles.

Such a scenario would require creating an on-demand IoT
cloud system composed of cloud service at the backend,
network functions capabilities in the middle, and IoT
entities at the edge. In order to meet the requirements
of the user of such an IoT cloud system, an end-to-end
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resource provisioning which ranges from the edge, through
the middle, to the backend with Quality of Service (QoS)
has to be guaranteed. Considering such an implementation
based on the recent technologies, the user would have
to provision each resource – cloud, network functions,
and IoT – individually, and then integrate them together
manually, which is an error-sensitive and time requiring
task [2], [3].

Various applications in mobile-edge computing
and cloudlets models [4] have identical requirements,
such as sensing applications in smart cities and
fitness/performance monitoring applications for athletes
in sport events, when on-demand computing and network
resources are required. The user would be required to lease
different entities, such as network equipment, sensors, and
cloud storage separately, and then link them together.
Such a rapid and dynamic provisioning of resources is
not attainable in recent IoT cloud systems. The two
main reasons are; (i) nearly all IoT systems are bound to
the actual source/host where some specific functionality
exists, and (ii) dynamic provisioning methods and
virtualization are examined for cloud infrastructures,
network functions, and IoT individually rather than
collectively. So with current technologies, establishing and
controlling end-to-end slices of resources across various
systems is not an easy task.

In order to address the aforementioned issues, in
this paper, we present an approach towards network
functions, IoT, and cloud resource provisioning, which
we call multi-dimensional Future Internet Architecture
(multiFIA). Referring to our motivational example,
end-to-end resource slicing would need to employ different
approaches for different infrastructures. So for network
functions linking clouds and IoT, our approach will
utilize 5G dynamic network slicing [5] to guarantee
the availability of an end-to-end dedicated “slice” of
the overall IoT system for particular requirements, and
which will not be interfered by other existing network
services provided to the users. The dynamic network
slicing concept leverages NFV and SDN to create many
dedicated end-to-end virtual networks. All end-to-end
network slices are created and operated over a common
physical infrastructure [5]. In the IoT-Cloud network
paradigm, services take the form virtual network slices for
the shared physical infrastructure, which can elastically
and flexibally utilize network, storage, and compute
resources according to dynamic service requirements. To
this purpose, an end-to-end network slice orchestrator
is proposed in this paper to manage all aspects of
network slicing. It enables to manage the entire life
cycle management of a slice, from design and creation to
operation and optimization.

For cloud resources and IoT, our proposed approach
will use on-demand resources provisioning methods
and virtualization. Ultimately, we use our existing
service abstraction model [6] which is delivered to the
orchestrator for provisioning the resources systematically
and dynamically.

The rest of the paper is organized as follows. In

Section II, we compare our approach with related work
in this area. In Section III, we discuss our approach and
also present our proposed multiFIA framework and its
major components, i.e. service abstraction model, resource
provisioning, and network slice orchestrator. The paper
concludes in Section IV with suggestions for future work.

II. Related Work
Network Virtualization and Service Abstraction: Fun-

damentally, both network and applications typically is
subject of planning an IoT cloud system. However, any
change in the network or in the applications may necessi-
tate revision of the planning. In this case, reconfigurations
in several places may be required. This drawback leads
to a design in which applications are decoupled from the
physical network. This is done by providing an abstract
view that is independent of concrete technologies and that
is also independent of the physical network topology [7].
In addition, various applications can be isolated from each
other through on-demand virtualization of the network
and its resources. This enables independent changes in
the physical network or in applications. Creating virtual
networks for applications also enables to integrate various
technologies. Thus, it results in the additional advantage
of providing multi-tenancy and heterogeneity in a natural
way.

Furthermore, the idea of virtualizing network topolo-
gies to improve network utilization has been examined
widely by means of initiatives such as OpenDayLight and
OpenFlow. More precisely, the authors in [8] describe a
system known as “ADVisor”. It presents a network vir-
tualization approach, which does not restrict the virtual
topologies created to particular subspace of the physical
topology. It also allows any two slices to share the same
flowspace while isolating both from each other.

Recent network virtualization methods address the fol-
lowing issues by employing the path of packets between
end points:

• Logical isolation of distributed end points or appli-
cations over the same shared physical infrastruc-
ture. It results in a term commonly referred to as
‘substrate’.

• Restricting connectivity to parts of the network,
and providing security aspects (authentication, en-
cryption, and access control).

• Adjust various Quality of Service (QoS) dimen-
sions such as reliability needs, guarantees, delay,
and bandwidth etc. for each virtual network. This
is provided by abstracting the methods involved in
creating the virtual networks. Thus, applications
are not aware of the underlying resource allocation
and resource management.

However, solutions today are configured through resource
management, network management based on pre-defined
rules or QoS features are either not or only basically
handled. Examples include separation of different appli-
cations such VoIP, network automation and management
or multi-tenant networks allowing several companies to



8989

resource provisioning which ranges from the edge, through
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Figure 1: Overall System Architecture.

share a common infrastructure [9], [10], [11]. Our approach
of network virtualization and service abstraction model
would support a finer-granularity mapping of services to
virtual networks.

Network Slicing and Network-Aware Service Composi-
tion: The other important aspect in managing IoT cloud
systems is network slicing. The prominent principles for
designing such systems are virtualization and composition
of IoT entities as autonomous units. In this paper, we have
taken these principles into consideration for our proposed
architecture. These ideas have been influenced by recent
work in network slicing; as an example, [5] describes how
network slices can be established and used. Other works
have shown how network slices can be established and
provisioned [12]. A more recent analysis of how network
slicing can be employed in 5G networks is presented in
[13].

In addition network-aware service composition has
been also focused in recent work; one such example is
shown in [14], which describes an integrated QoS-aware
composition approach that combines network services and
application services together. An algorithm of the similar
type has been also described in [15]. More precisely, the
recent work in IoT area has focused on employing network-
aware service composition to IoT services. Algorithms for
IoT service composition [16] consider both latency and
QoS at the IoT application layer. We will take these algo-

rithms into consideration for implementing our proposed
architecture in this paper.

End-to-end Resource Provisioning: In [17], an end-to-
end perspective on provisioning, managing, and controlling
of cloud and IoT resources is presented. However, it does
not examine network functions, although it includes meth-
ods and ideas for establishing end-to-end slices of resources
and does not cover end-to-end clouds, network functions,
and IoT.

III. MultiFIA Framework
We address the aforementioned issues by designing a

framework named multi-dimensional Future Internet Ar-
chitecture (multiFIA). The aim of the framework is to
provide major components in order to establish, manage,
and adapt end-to-end slices of various types of resources
from clouds, network functions, and IoT for specific users
based on their requirements.

A. Proposed Architecture
The overall architecture of our proposed framework

is illustrated in Figure 1. It includes three fundamental
building blocks: (i) Service Abstraction Model, (ii) Resource
Provisioning and (iii) Slice Orchestration. We use our
existing Service Abstraction Model [6] for the orchestrator,
with which the orchestrator would understand the require-
ments of the requested services and provision the resources
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for the services. The Slice Orchestration is responsible
for creating, managing, and adapting end-to-end slices of
different types of resources for particular users based on
their requirements.

The overall architecture has been separated into two
planes, i.e. control plane and data plane. The major com-
ponents of the control plane include Application Service
Provider (ASP), Network Service Provider (NSP), and Or-
chestrator. In general, ASP provides access to the users at
different levels with applications and related services over
the Internet. It offers multiple services over the 5G network
to the users at individual or at enterprise level. ASP
interact with NSP through Web API for the management
of services at the application level. NSP consists of further
two sub-components named as Abstraction and an Orches-
tration agent, orchestration agent is for interacting with
the Orchestrator. Orchestrator is responsible for dynamic
resource pooling and matching, and communication with
Edge Cloud, Controller, Infra Network and Core Cloud.

The data plane on the other hand consists of User/End
module. It also contains an Orchestration agent for in-
teracting with the orchestrator that is located in the
control plane. End user would be able to request a ser-
vice/application, which will be provided through multiple
networks between the User/End node and the Core Cloud
based on the requested service/application requirements.

The other important component of this architecture is
ID Registrar, which is responsible for storing and keeping
track of IDs and the location of the application service
available over the network. The functionality of ID Reg-
istrar is shared between both control and data planes of
the architecture. Initially, all the information related to
devices/contents/services based on their ID is registered
in the ID Registrar. Based on the location and ID of the
application in Core Cloud, the available network resources
are registered for the user request. After the registration
of resources, the user can request the application/service
from the list of available applications. The Orchestrator
then creates an end-to-end dedicated slice to meet user re-
quirements after getting the latest update of the resources
from the resource pool. The data plane of the overall
architecture is depicted in Figure 2.

Figure 2: Data Plane of Overall Architecture.

B. Service Abstraction Model

With our existing service abstraction model [6], the
orchestrator gets the abstracted requirements of the re-
quested services, and maintains/provisions networks per-
formance to meet the requested service requirements. The
orchestrator deals with the dynamic nature of the services
by easily changing the networks accordingly. For instance,
the abstraction model describes any change occurred in the
number of viewers of the video service, whereas the orches-
trator manages the required bandwidth for this change.
Our service abstraction model abstracts the requested
service parameters to support future and legacy network
services. The overall concept of the service abstraction
model is depicted in Figure 3.

Send 
Request

Receive  
Response

Figure 3: The Service Abstraction Model.

The service requirements are described in the service
abstraction description of service abstraction layer. The
requirements are classified into three categories, i.e., Re-
sources, Context, and Content. The service-related param-
eters are provided by Content. They may be standard and
resolution of a video, QoS, or audio bit-rate. The user-
related parameters are covered by Context. They may be
schedule and location of the service, or interest of the
user. The requirements of the infrastructural resources are
provided by Resource. All these three sets of parameters
are converted into XML format, and are parsed at service
abstraction description module. After that, the communi-
cation manager module transfers these requirements of a
service to the orchestrator. Finally, they are processed by
the orchestrator, and an appropriate network is generated
for the user to access the requested service.

The service parameters are received by the service ab-
straction layer either from the applications or inputted by
the users as shown in Figure 2. Based on these parameters,
the service is categorized by the service abstraction layer,
which then generates a suitable service abstraction model
in XML format and delivers it to the orchestrator.



9191

for the services. The Slice Orchestration is responsible
for creating, managing, and adapting end-to-end slices of
different types of resources for particular users based on
their requirements.

The overall architecture has been separated into two
planes, i.e. control plane and data plane. The major com-
ponents of the control plane include Application Service
Provider (ASP), Network Service Provider (NSP), and Or-
chestrator. In general, ASP provides access to the users at
different levels with applications and related services over
the Internet. It offers multiple services over the 5G network
to the users at individual or at enterprise level. ASP
interact with NSP through Web API for the management
of services at the application level. NSP consists of further
two sub-components named as Abstraction and an Orches-
tration agent, orchestration agent is for interacting with
the Orchestrator. Orchestrator is responsible for dynamic
resource pooling and matching, and communication with
Edge Cloud, Controller, Infra Network and Core Cloud.

The data plane on the other hand consists of User/End
module. It also contains an Orchestration agent for in-
teracting with the orchestrator that is located in the
control plane. End user would be able to request a ser-
vice/application, which will be provided through multiple
networks between the User/End node and the Core Cloud
based on the requested service/application requirements.

The other important component of this architecture is
ID Registrar, which is responsible for storing and keeping
track of IDs and the location of the application service
available over the network. The functionality of ID Reg-
istrar is shared between both control and data planes of
the architecture. Initially, all the information related to
devices/contents/services based on their ID is registered
in the ID Registrar. Based on the location and ID of the
application in Core Cloud, the available network resources
are registered for the user request. After the registration
of resources, the user can request the application/service
from the list of available applications. The Orchestrator
then creates an end-to-end dedicated slice to meet user re-
quirements after getting the latest update of the resources
from the resource pool. The data plane of the overall
architecture is depicted in Figure 2.

Figure 2: Data Plane of Overall Architecture.

B. Service Abstraction Model

With our existing service abstraction model [6], the
orchestrator gets the abstracted requirements of the re-
quested services, and maintains/provisions networks per-
formance to meet the requested service requirements. The
orchestrator deals with the dynamic nature of the services
by easily changing the networks accordingly. For instance,
the abstraction model describes any change occurred in the
number of viewers of the video service, whereas the orches-
trator manages the required bandwidth for this change.
Our service abstraction model abstracts the requested
service parameters to support future and legacy network
services. The overall concept of the service abstraction
model is depicted in Figure 3.

Send 
Request

Receive  
Response

Figure 3: The Service Abstraction Model.

The service requirements are described in the service
abstraction description of service abstraction layer. The
requirements are classified into three categories, i.e., Re-
sources, Context, and Content. The service-related param-
eters are provided by Content. They may be standard and
resolution of a video, QoS, or audio bit-rate. The user-
related parameters are covered by Context. They may be
schedule and location of the service, or interest of the
user. The requirements of the infrastructural resources are
provided by Resource. All these three sets of parameters
are converted into XML format, and are parsed at service
abstraction description module. After that, the communi-
cation manager module transfers these requirements of a
service to the orchestrator. Finally, they are processed by
the orchestrator, and an appropriate network is generated
for the user to access the requested service.

The service parameters are received by the service ab-
straction layer either from the applications or inputted by
the users as shown in Figure 2. Based on these parameters,
the service is categorized by the service abstraction layer,
which then generates a suitable service abstraction model
in XML format and delivers it to the orchestrator.

C. Resource Provisioning
As depicted in Figure 1, the orchestrator also commu-

nicates with the Infra Network and SDN controller in order
to manage cloud and network infrastructure resources.
More precisely, Network Resource Communicator (NRC)
module is responsible for managing the network infrastruc-
ture resources, whereas Cloud Resource Communicator
(CRC) manages storage and compute resources in the
cloud according to the user requirements. Infra Network
Monitor is a module meant for collecting cloud and net-
work infrastructure-related information and storing it in
an internal database server for use by the orchestrator. As
illustrated in Figure 4, NRC interacts with the SDN con-
troller in order to get the details of the available resources,
and instruct the changes/rules to manage the network.
CRC on the other hand exploits APIs provided by the
cloud provider in order to control/manage/allocate storage
and compute resources based on the application/service
requirements.

ONOS 
REST API

Compute
API

User
OpenStack/

ONOS 
Integration

Figure 4: Network and Cloud Resource Communicator
Modules.

When a user requests for a service/application, it is
forwarded to the web server. The web server forwards
this request to service abstraction client module, which
abstracts the requirements such as service type and quality,
and forwards it to the service abstraction server module. It
parses the request message and forwards it to the orches-
trator, which then forwards set of links and bandwidth for
embedding virtual topology to NRC module, and Node and
Service to CRC module. Hence, the orchestrator handles
the network requirements by means of SDN Controller and
service requirements via Cloud Manager.

D. Slice Management in Orchestrator
The orchestrator in our proposed architecture is re-

sponsible for the creation, management, and adaption
of end-to-end slices. The slice management part of the
orchestrator, as shown in Figure 5, has three main com-
ponents, i.e. Sliced Network Manager (SNM), Resource
Matching Function for Sliced Network (RMFS), and End
node Matching functions (ENMF). SNM manages the end-
to-end network slices that are created with dedicated or
shared resources. Application Service Provider interacts
with the SNM through the Network Service Provider and
RMFS. Sliced networks are created based on the ap-
plication/service requirements requested by the user/end
node. The functions in RMFS and ENMF are used to
adapt an end-to-end slice if there is a change in the
application/service requirements that is requested by the
user/end node.

Figure 5: Slice Management in Orchestrator.

1) Slice Orchestration: An end-to-end slice creation is
illustrated in Figure 6. In the first step, ASP interacts
with control plane’s TAF (Abstraction) interface through
NSPs (TAF or Abstraction Interface). ASP can have
direct access to the RMFS for the matched resources
in the resource pool. Resources in the resource pool in-
clude edge computing resources, core computing resources,
function resources, access network resources, core network
resources, and end node resources. Second step in slice
orchestration is matching the resources for a slice network.
Since these resources are provided to the user through a
sliced network, the third step is sliced network generation
after interacting with Infra interface component in the
fourth step. Network slicing is then performed in the
fifth step through edge clouds, core clouds, core networks
and access networks. Sliced networks are managed by the
SNM in the sixth step, and in finally in the seventh step
the sliced network instances are available to access the
service/application requested by the user though an end-
to-end slice.

Figure 6: Slice Orchestration.

E. Towards an Implementation

We envision various approaches to implement the mul-
tiFIA framework because of the diversity and complexity
of the underlying clouds, network function services, and
IoT. For a concrete implementation of our framework, we
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focus on three major aspects. The first aspect is to develop
a thin abstraction layer to arbitrate between complex
and dynamic requirements of services, and flexible and
diverse network requirements. We aim to improve the
service abstraction model for a variety of future services
with different dynamic requirements. We also plan to
design a framework for the service abstraction layer to
deliver the service abstraction model to both of SDN/NFV
orchestrator and intended users of requested services.

Currently, to manage network resources, we have used
ONOS SDN controller to communicate with orchestrator’s
NRC module, and to manage cloud resources, we have
used OpenStack to communicate with orchestrator’s CRC
module. We have integrated ONOS SDN controller with
OpenStack to manage and monitor the resources more
efficiently. The resources are allocated in the form of VMs
in order to meet the requirements of the requested applica-
tions/services. To this purpose, we implemented a resource
allocator module inside the orchestrator, which determines
what VMs are best to be allocated. We have addressed
this issue by means of an algorithm called maximum RAM
minimum CPU utilization (MRMC) algorithm, which first
selects the VMs with the maximum amount of RAM, and
then out of these selected VMs, the VM with the minimum
CPU utilization averaged over the last n quantifications is
selected for allocation.

For creation and management of sliced networks, we
are working on our proposed slice orchestration frame-
work presented in Section III. We are also investigating a
slice-based 5G architecture, combined with many existing
paradigms such as SDN, NFV, and cloud computing, that
can efficiently manage network slices. We aim to work on
the concept of “Network Store in a programmable cloud
”allowing for dynamic network slicing [13].

IV. Conclusions and Future Work

In this paper, we have presented an important research
issue of end-to-end resource management and provisioning
in IoT systems that is crucial for many diverse applica-
tions, such as on-demand sensing and disaster responses.
Taking into account the heterogeneous and dynamic na-
ture of such systems and leveraging service abstraction
models, resource pooling and matching, orchestration, and
SDN, we have proposed multiFIA, a multi-dimensional
future Internet architecture that offers techniques clouds,
network function services, and IoT. Our approach would
not only facilitate users to define their requirements from
the system, it would also allow system designers to devise
resources at different levels of the system to specify the
integrated functionality required by the user. We also
discussed our steps taken towards implementation to make
multiFIA a reality.

In the future, we aim to provide further details about
the components of multiFIA architecture. We would also
develop a prototype, and evaluate it on diverse practical
use cases.
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